

Protección contra explosiones - Introducción

En industrias químicas, petroquímicas, procesos industriales, plataformas petrolíferas e instalaciones militares existen materiales que son almacenados, procesados o producidos en áreas donde la atmósfera es potencialmente explosiva y en las cuales se necesitan elementos calefactores antideflagrantes.

A partir de Julio del 2003 todos los equipos con puesta en servicio dentro de la Comunidad Europea han de cumplir por obligación con la **Directiva Atex 94/9/CE**. Todos los equipos expuestos en el presente catálogo están certificados en base a la **Directiva Atex 94/9/CE**.

Generalidades

A efectos de la **Directiva 94/9/CE**, una atmósfera explosiva se define como una mezcla:

- a) de sustancias inflamables en forma de gases, vapores, nieblas o polvos;
- b) con el aire:
- c) en las condiciones atmosféricas;
- d) en la que, tras una ignición, la combustión se propaga a la totalidad de la mezcla no quemada (es preciso señalar que la combustión no siempre consume todo el polvo, si lo hay).

Para que se produzca una explosión deben coincidir las siguientes circunstancias:

- Presencia de oxígeno en el aire.
- Presencia de una sustancia inflamable en forma de gas, vapor, niebla o polvo.
- Una fuente de energía suficiente, como puede ser un arco eléctrico o una elevación determinada de temperatura.

Entenderemos condiciones atmosféricas cuando la temperatura está comprendida entre -20°C y +40°C y la presión está en el rango 0,8 bar a 1,1 bar Todo material eléctrico que deba instalarse en este tipo de atmósferas debe ser diseñado y construido para que su emisión de energía no produzca la previsible explosión, o que ésta esté controlada.

La Comunidad Europea ha emitido la **Directiva ATEX 94/9/CE** y normas que requieren del usuario la evaluación del riesgo de explosión, teniendo en cuenta la probabilidad de presencia de dichas atmósferas, su grado de peligrosidad, la presencia de fuentes de energía, los procesos y sus interacciones, la instalación de equipos y sus posibles consecuencias.

- SI existe un riesgo, el usuario debe:
- 1. Prevenir la formación de atmósferas potencialmente explosivas. Si ello no es posible,
 - 2. Prevenir la ignición. Si ello es imposible,
 - 3. Reducir los efectos de la explosión de tal forma que el riesgo se elimine.

Marcado ATEX

Grupo y categoría de los equipos

	Cuuna	Categoría	Nivel de	Amb	iente	Uso
₩Ⅱ	Grupo	Calegoria	protección	Gas	Polvo	USO
	I M1		Nivel de protección MUY ALTO		-	Utilizable en atmósfera Ex
Minería		M2	Nivel de protección ALTO			Desconectable en presencia de atmósfera Ex
	1 1	Nivel de	G		Zonas 0, 1 , 2	
		1	protección MUY ALTO		D	Zonas 20, 21, 22
		2	Nivel de protección	G		Zonas 1, 2
		2	ALTO		D	Zonas 21, 22
ndustria		2	Nivel de	G		Zona 2
	3		protección NORMAL		D	Zona 22

Clasificación de las zonas peligrosas (Según EN 60079-10)

Las atmósferas explosivas se clasifican en zonas. La clasificación en zonas depende de la probabilidad temporal y espacial de que aparezca una atmósfera explosiva peligrosa.

	ación de nas	Criterio
Gases	Polvo	5,110,110
Zona 0	Zona 20	Presencia de la atmósfera explosiva de forma permanente, prolongada o frecuente (> 1000 horas por año)
Zona 1	Zona 21	Presencia de la atmósfera explosiva de forma ocasional en condiciones normales (10 - 1000 horas por año)
Zona 2	Zona 22	Presencia de la atmósfera explosiva de forma anormal y, en dicho caso, brevemente (< 10 horas por año)

Grupos de gases

En los grupos de explosión se diferencia en primer lugar entre Grupo I y Grupo II de material: El material eléctrico del Grupo I se aplican en minas con peligro de aparición de grisú.

Para el material eléctrico del Grupo II se aplica una nueva subdivisión en grupos de explosión. Esta subdivisión depende de la capacidad de transmisión de la ignición a través de un intersticio con ancho máximo de seguridad y longitud dados.

igilicion a na	ignicion a traves de un intersticio con anono maximo de segundad y longitud dados											
	Grupo	Atmósfera típica	Corriente mínima de ignición (CMI) Seguridad intrínseca Ex ia / ib			de segurida	ental máximo MS) en mm te Ex d	Modos de protección aplicables				
Minería	I	Metano	4	Mayor	A LEX	4	Amplio		Todos			
	IIA	Propano	0,8 < CMI	Energía mínima oara la ignición del gas	₹ Ex	0,9 < IEMS	del intersticio eflagrante	Ex				
	IIB	Etileno	0,45 < CMI < 0,8	Energ para la igr	#	0,5 < IEMS < 0,9	Tamaño antid	\(\sum_{\text{Ex}}\)	Ex d - Ex ia / ib			
Industria	IIC	Hidrógeno / Acetileno	CMI < 0,45	Menor	· / Ex	IEMS < 0,5	Reducido					
	II	Todos los gases							Ex e - Ex m - Ex p - Ex o - Ex q - Ex n			

Nota

- Un aparato para el Grupo de gases IIC es apto también para los Grupos IIA y IIB.
- Un aparato para el Grupo de gases IIB es apto también para el Grupos IIA.

Modos de protección

Los modos de protección son medidas constructivas y eléctricas tomadas en el material para alcanzar protección contra explosión en atmósferas potencialmente explosivas.

Tipo de protección	Letra de identificación	Representación esquemática	Principio fundamental
Requisitos generales		(x3)	Determinaciones generales para el tipo constructivo y ensayo de material eléctrico destinados a atmósferas Ex
Inmersión en aceite	Ex o	4	El material o sus componentes quedan inmersos en aceite y separados así de la atmósfera explosiva
Presurizado	Ex p		La fuente de ignición es rodeada por un gas de protección bajo sobrepresión (mín. 0,5 mbar); la atmósfera exterior no puede penetrar
Pulverulento	Ex q		La fuente de ignición queda rodeada por arena de grano fino. La atmósfera Ex que rodea a la caja no puede inflamarse debido a un arco
Antideflagrante	Ex d		Si se produce una ignición dentro de la envolvente, ésta resiste a la presión, es decir, la explosión no se propaga al exterior
Seguridad aumentada	Ex e	X	Aplicable sólo al material o sus componentes que en caso normal no generan chispas ni arcos voltáicos, no pueden adoptar temperaturas peligrosas y cuya tensión de alimentación no supere 1 kV
Seguridad	Ex ia	THE L	Limitando la energía existente en el circuito se evita la
intrínseca	Ex ib		aparición de temperaturas excesivas, chispas y arcos voltáicos
Encapsulado	Ex m	611 (111 (112 (111 (111)	La fuente de ignición queda encerrada en una masa por lo que no puede inflamarse la atmósfera explosiva
No inflamable	Ex n	*	Aplicación ligeramente simplificada de los diferentes modos de protección de zona 2, "n" significa "no inflamable"

Clases de temperatura

La temperatura de ignición de un gas o polvo inflamable es la menor temperatura en una superficie caliente a partir de la cual se produce la ignición de la mezcla gas/aire o vapor/aire.

Por ello, la máxima temperatura superficial de un material debe ser siempre inferior a la temperatura de inflamación de la atmósfera envolvente.

Clase de temperatura	Temperatura superficial máxima del material	Temperaturas de ignición de sustancias inflamables
T1	450 °C	> 450 °C
T2	300 °C	> 300 °C
Т3	200 °C	> 200 °C
T4	135 °C	> 135 °C
T5	100 °C	> 100 °C
T6	85 °C	> 85 °C

Clases de temperatura GAS

Temperatura de ignición POLVO

- Temperatura máxima de superficie de material < Temp. ignición capa -75 °C
- Temperatura máxima de superficie del material < 2/3 x Temp. ignición nube

HIDH

GRUPO 3 - Equipos de calentamiento utilizables en atmósfera potencialmente explosiva

CALENTADOR DE BIDÓN PARA ZONAS CLASIFICADAS, MODELO HIDH

Descripción

El calentador de bidón HIDH para zonas con atmósferas potencialmente explosivas está diseñado para el calentamiento de bidones normalizados de 205 litros o pequeños depósitos de acero. El calentador de bidón HIDH está compuesto por una única bobina de inducción, la cual está encapsulada en un cilindro hecho con un material de resina de vidrio reforzado.

La bobina se conecta a la corriente y genera el calor directa y uniformemente sobre las paredes del bidón. La transferencia de energía se realiza mediante un campo magnético. De esta forma no hay transmisión térmica por los medios convencionales de radiación o convección. Al no haber elementos calientes, la bobina permanecerá substancialmente más fría que el bidón que está siendo calentado.

Seguridad

La ausencia completa de elementos calientes y la encapsulación de todos los componentes eléctricos permite su uso en áreas clasificadas Zonas 1 y 2.

El calentador de bidón HIDH está certificado ATEX Ex II 2 G/D EEx"e" IIC T3 (170 °C).

La calefacción uniforme sin puntos calientes reduce el riesgo de degradación del producto. El derramamiento accidental no presenta un riesgo de incendios y el personal puede trabajar cómodamente en sus proximidades. Todo ello permite que el material sea calentado en el punto del uso, eliminando así el transporte de bidones calientes.

Rendimiento

La baja temperatura del sistema y la inexistencia de pérdidas de calor por transmisión térmica contribuyen a la alta eficiencia del calentador por inducción. En comparación con los calentadores de bidón convencionales se consigue un ahorro energético de hasta el 50%.

Velocidad

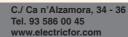
Los tiempos de calefacción dependerán del contenido del bidón, pero para dar una idea aproximada, la rampa de subida de la temperatura con un líquido orgánico viscoso típico es de aprox. 15 °C / h. Usando la superficie completa de la pared del calentador para transmitir energía, se puede alcanzar el punto de trabajo óptimo y más rápido sin que haya degradación del producto.

Mantenimiento

Sin elementos de calefacción y sin piezas móviles, los calentadores de bidón HIDH tienen vida virtualmente ilimitada, y no se requiere ningún mantenimiento.

Características generales

- Certificado ATEX Ex II 2 G/D EEx'e' IIC T3, según EN 50014 y EN 50019
- Grado de protección contra la humedad IP-66
- Aparato eléctrico Clase II
- Tensión de alimentación ~240 V, 50Hz
- Potencia consumida / Intensidad:
 - Encendido: 2750 W / 21A
 - (Factor de potencia inductivo) En régimen: 2250 W / 18A


Aplicaciones usuales

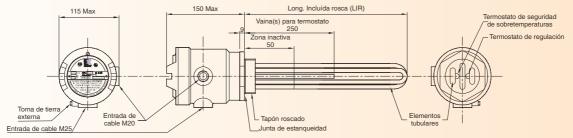
- Botellas de gas
- Reactores a pequeña escala
- Contenedores de procesos
- Industria química
- Industria farmacéutica
- Industria petroquímica
- Almacenes de pintura.

Modelos normalizados

Modelo	Voltios	Watios	Dime	Peso		
	Voltios	(en régimen)	Ø Exterior	Ø Interior	Altura	en Kg
HIDH-2,25	~240	2250	Ø743	Ø613	711	48

GRUPO 3 - Equipos de calentamiento utilizables en atmósfera potencialmente explosiva

CALEFACTORES DE INMERSIÓN CON TAPÓN ROSCADO Y ELEMENTOS CALEFACTORES TUBULARES, GAMA RFA


La gama 'RFA' de calefactores de inmersión tubulares es adecuada para la instalación en los tanques de proceso, las baños de seguridad, los colectores de aceite motor, recipientes de presión y equipos similares, situados en áreas peligrosas clasificadas como Zona 1 y Zona 2 donde la atmósfera inflamable es del grupo IIA, IIB o IIC. Adecuados para calentar líquidos o gases que no sean sean corrosivos a los materiales del calefactor.

Aplicaciones usuales

- Precalentamiento de agua ó aceite
- Tanques de limpieza y aclarado
- Equipos de proceso
- Sistemas transferidores de calor
- Calderas
- Protección antihielo

Características generales

- Certificado ATEX Ex II 2 G/D EEx'd' IIC T3 a T6, según EN 50014 y EN 50018
- Caja de conexiones de aluminio protegida contra la humedad IP67
- Sensor de temperatura incorporado
- Válido para temperatura ambiente hasta -40 °C
- Acoplamiento del calefactor mediante tapón roscado de 2" 2"¼ 2"½
- Diseño únicamente para instalación horizontal. Instalación vertical disponible bajo pedido.
- Caja de conexiones: Caja de aluminio con un máximo de 2 entradas para cables, toma de tierra interna y externa y tapa roscada. ATEX II 2 G/D EEx'd' IIC T4
 a T6 con opción de T3 a T6 cuando la caja de conexiones está separada del tapón de acoplamiento (tipo RFA/SO). Grado de protección contra la humedad
 IP67.
- Elementos calefactores: Máximo tres elementos tubulares, fabricados con hilo resistivo de aleación de NiCr 80/20, Oxido de Magnesio compactado y funda tubular de Cobre, Acero, Monel, Inconel, Incoloy 800/825, Acero inoxidable o Titanio, soldados al tapón mediante soldadura con aportación (brazing) o soldadura sin aportación (TIG) según la aplicación.
- Controles: Los calefactores RFA incorporan por defecto una protección contra sobretemperaturas. Opcionalmente se pueden incorporar otros dispositivos de temperatura como termostatos, termorresistencias o termopares.
- · Acoplamiento: Dentro de los límites de diseño, se puede especificar la rosca y material del tapón de acoplamiento.

Modelos RFA normalizados con tapón roscado 2"1/2 en acero inoxidable AISI 316L.

Modelos normalizados especialmente diseñados para su uso en equipos de Biofuel.

Código	LIR en mm	Voltios	Watios	W/cm²	Material tubo	Rango de temperatura de los termostatos		
	en min				tubo	de control	de seguridad	
RFA3-15-DS	381	3~240 ∆ 3~415 人	3000	4,7	AISI 321 Ø10	+5 / +80 °C	+95 °C	
RFA6-27-DSZ	686	3~240 ∆ 3~415 人	6000	2,8	AISI 321 Ø10	+5 / +80 °C	+95 °C	
RFA12-27-DSZ	686	3~240 ∆ 3~415 人	12000	5,3	AISI 321 Ø10	+5 / +80 °C	+95 °C	

Modelos RFA normalizados con tapón roscado 2" en latón.

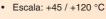
Elección del termostato de control

El termostato de control puede ser sustituido por cualquier otro de la siguiente lista sin coste adicional. En caso necesario, indíquelo en su pedido:

• Escala: -10 / +65 °C

• Escala: +45 / +120 °C

Código	LIR	Voltios	Watios	W/cm²	Material tubo	Rango de temperatura de los termostatos		
	en mm				tubo	de control	de seguridad	
RFA111	280	~240	1000	8,4	Incoloy-825 Ø8	+5 / +80 °C	+45 / +95 °C	
RFA211	280	~240	2000	5,7	Incoloy-825 Ø8	+5 / +80 °C	+45 / +95 °C	
RFA311	280	3~240 ∆ 3~415 人	3000	8,4	Incoloy-825 Ø8	+5 / +80 °C	+45 / +95 °C	
RFA330	762	3~240 ∆ 3~415 人	3000	2,8	Incoloy-825 Ø8	+5 / +80 °C	+45 / +95 °C	
RFA616	406	3~240 ∆ 3~415 人	6000	11,2	Incoloy-825 Ø8	+5 / +80 °C	+45 / +95 °C	
RFA630	762	3~240 ∆ 3~415 人	6000	5,6	Incoloy-825 Ø8	+5 / +80 °C	+45 / +95 °C	
RFA916	406	3~240 ∆ 3~415 人	9000	16,8	Incoloy-825 Ø8	+5 / +80 °C	+45 / +95 °C	
RFA923	584	3~240 ∆ 3~415 人	9000	11,2	Incoloy-825 Ø8	+5 / +80 °C	+45 / +95 °C	
RFA926	660	3~240 ∆ 3~415 人	9000	9,8	Incoloy-825 Ø8	+5 / +80 °C	+45 / +95 °C	
RFA1223	584	3~240 ∆ 3~415 人	12000	14,8	Incoloy-825 Ø8	+5 / +80 °C	+45 / +95 °C	
RFA1233	838	3~240 ∆ 3~415 人	12000	10,1	Incoloy-825 Ø8	+5 / +80 °C	+45 / +95 °C	


Modelos RFA normalizados con tapón roscado 2" en acero inoxidable.

24.11	LIR		Wation		Material	Rango de temperatura de los termostatos		
Código	en mm	Voltios	Watios	W/cm ²	tubo	de control	de seguridad	
RFA111S	280	~240	1000	8,4	Incoloy-825 Ø8	+5 / +80 °C	+45 / +95 °C	
RFA211S	280	~240	2000	5,7	Incoloy-825 Ø8	+5 / +80 °C	+45 / +95 °C	
RFA311S	280	3~240 ∆ 3~415 人	3000	8,4	Incoloy-825 Ø8	+5 / +80 °C	+45 / +95 °C	
RFA330S	762	3~240 ∆ 3~415 人	3000	2,8	Incoloy-825 Ø8	+5 / +80 °C	+45 / +95 °C	
RFA616S	406	3~240 ∆ 3~415 人	6000	11,2	Incoloy-825 Ø8	+5 / +80 °C	+45 / +95 °C	
RFA630S	762	3~240 ∆ 3~415 人	6000	5,6	Incoloy-825 Ø8	+5 / +80 °C	+45 / +95 °C	
RFA916S	406	3~240 ∆ 3~415 人	9000	16,8	Incoloy-825 Ø8	+5 / +80 °C	+45 / +95 °C	
RFA923S	584	3~240 ∆ 3~415 人	9000	11,2	Incoloy-825 Ø8	+5 / +80 °C	+45 / +95 °C	
RFA926S	660	3~240 ∆ 3~415 人	9000	9,8	Incoloy-825 Ø8	+5 / +80 °C	+45 / +95 °C	
RFA1223S	584	3~240 ∆ 3~415 人	12000	14,8	Incoloy-825 Ø8	+5 / +80 °C	+45 / +95 °C	
RFA1233S	838	3~240 ∆ 3~415 人	12000	10,1	Incoloy-825 Ø8	+5 / +80 °C	+45 / +95 °C	

Elección del termostato de control

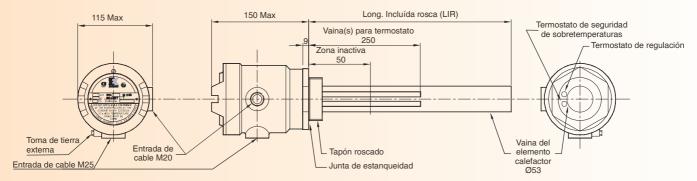
El termostato de control puede ser sustituido por cualquier otro de la siguiente lista sin coste adicional. En caso necesario, indíquelo en su pedido:

• Escala: -10 / +65 °C

GRUPO 3 - Equipos de calentamiento utilizables en atmósfera potencialmente explosiva

CALEFACTORES DE INMERSIÓN CON TAPÓN ROSCADO, VAINA E INTERIOR DE CUERPO CERÁMICO, GAMA RFA-C

La gama 'RFA-C' de calefactores de inmersión con vaina e interior de cuerpo cerámico reemplazable proporciona una buena solución de áreas clasificadas para le calentamiento de aceite u otros procesos similares donde se requiere una baja densidad de carga. El elemento calefactor puede ser retirado para su inspección o remplazo sin necesidad de vaciar el depósito. La caja de conexiones EEx'd' protege las conexiones eléctricas de la atmósfera explosiva.



Aplicaciones usuales

- Precalentamiento de agua ó aceite
- Tanques de limpieza y aclarado
- Equipos de proceso
- Sistemas transferidores de calor
- Calderas
- Protección antihielo

Características generales

- Certificado ATEX Ex II 2 G/D EEx'd' IIC T3 a T6, según EN 50014 y EN 50018
- Caja de conexiones de aluminio protegido contra la humedad IP67
- Sensor de temperatura incorporado
- Válido para temperatura ambiente hasta -40 °C
- Acoplamiento del calefactor mediante tapón roscado de 2"½. Bajo pedido puede fabricarse con cualquier tipo de rosca ó brida normalizada.
- Diseño únicamente para instalación horizontal. Instalación vertical disponible bajo pedido.
- Caja de conexiones: Caja de aluminio con un máximo de 2 entradas para cables, toma de tierra interna y externa y tapa roscada. Grado de protección contra la humedad IP67.
- Elementos calefactores: Elemento cerámico reemplazable con hilo resistivo de alta calidad de Níquel Cromo 80-20
- Vaina: Modelos normalizados de acero ó acero inoxidable AISI 316L. Bajo pedido, puede fabricarse en Monel, Incoloy, Inconel ó Titanio con soldadura adecuada en función de la aplicación.
- Controles: Los calefactores RFA-C incorporan por defecto una protección contra sobretemperaturas. Opcionalmente se pueden incorporar otros dispositivos de temperatura como termostatos, termorresistencias o termopares.
- Acoplamiento: Dentro de los límites de diseño, se puede especificar la rosca y material del tapón de acoplamiento.
- Potencia: Potencia máxima: 14.5 kW
- Alimentación: Posibilidad de voltajes hasta ~690 V

Modelos RFA-C normalizados con tapón roscado 2"1/2 en latón y vaina en acero al carbono

Código	ódigo LIR Voltios Watios W/cm² Material en mm		Rango de temperatura de los termostatos				
	en mm				funda	de control	de seguridad
RFA-CM1-16D	406	~240	1000	1,5	Acero al carbono	+5 / +80 °C	+45 / +95 °C
RFA-CM2-32D	812	3~240 △ 3~415 人	2000	1,5	Acero al carbono	+5 / +80 °C	+45 / +95 °C
RFA-CM3-48D	1219	3~240 △ 3~415 人	3000	1,5	Acero al carbono	+5 / +80 °C	+45 / +95 °C
RFA-CM4-64D	1626	3~240 ∆ 3~415 人	4000	1,5	Acero al carbono	+5 / +80 °C	+45 / +95 °C
RFA-CM5-80D	2032	3~240 ∆ 3~415 人	5000	1,5	Acero al carbono	+5 / +80 °C	+45 / +95 °C
RFA-CM6-99D	2515	3~240 ∆ 3~415 人	6000	1,5	Acero al carbono	+5 / +80 °C	+45 / +95 °C
RFA-CM7-120D	3048	3~240 ∆ 3~415 人	7000	1,5	Acero al carbono	+5 / +80 °C	+45 / +95 °C

Elección del termostato de control

El termostato de control puede ser sustituido por cualquier otro de la siguiente lista sin coste adicional. En caso necesario, indíquelo en su pedido:

Escala: +40 / +80 °C
 Escala: +0 / +40 °C
 Escala: -10 / +65 °C
 Escala: +10 / +90 °C

Modelos RFA-C normalizados con tapón roscado 2"1/2 en acero inoxidable y vaina en acero inoxidable AISI 316L

Código	LIR	Voltios	Watios	W/cm²	Material	Rango de temperatura de los termostatos		
	en mm				funda	de control	de seguridad	
RFA-CS1-16D	406	~240	1000	1,5	AISI 316L	+5 / +80 °C	+45 / +95 °C	
RFA-CS2-32D	812	3~240 △ 3~415 人	2000	1,5	AISI 316L	+5 / +80 °C	+45 / +95 °C	
RFA-CS3-48D	1219	3~240 △ 3~415 人	3000	1,5	AISI 316L	+5 / +80 °C	+45 / +95 °C	
RFA-CS4-64D	1626	3~240 △ 3~415 人	4000	1,5	AISI 316L	+5 / +80 °C	+45 / +95 °C	
RFA-CS5-80D	2032	3~240 ∆ 3~415 人	5000	1,5	AISI 316L	+5 / +80 °C	+45 / +95 °C	
RFA-CS6-99D	2515	3~240 ∆ 3~415 人	6000	1,5	AISI 316L	+5 / +80 °C	+45 / +95 °C	
RFA-CS7-120D	3048	3~240 ∆ 3~415 人	7000	1,5	AISI 316L	+5 / +80 °C	+45 / +95 °C	

Elección del termostato de control

El termostato de control puede ser sustituido por cualquier otro de la siguiente lista sin coste adicional. En caso necesario, indíquelo en su pedido:

Escala: +40 / +80 °C
 Escala: +0 / +40 °C
 Escala: -10 / +65 °C
 Escala: +10 / +90 °C

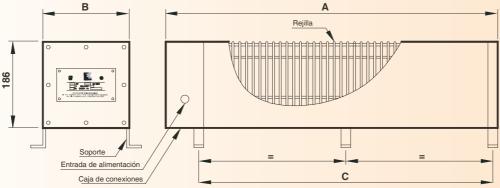
GRUPO 3 - Equipos de calentamiento utilizables en atmósfera potencialmente explosiva

CONVECTORES DE AIRE CALIENTE, GAMA FAW

La gama 'FAW ' de convectores de aire caliente ha sido diseñada para la calefacción de pequeñas áreas de trabajo, zonas de almacenamiento o aplicaciones similares, situados en zonas peligrosas clasificadas como Zona 1 ó Zona 2, donde la atmósfera inflamable es del grupo Gas IIA, IIB ó IIC.

Aplicaciones usuales

- Hangares de aeronaves
- Plantas químicas
- · Plataformas petrolíferas


Características generales

- Certificado ATEX por LCIE Ex II 2 G EEx'e' IIC T2 a T4 , según EN 50014 y EN 50019
- Caja de conexiones con grado de protección contra la humedad IP66 / IP67
- Disponibles para clasificación de temperatura T2, T3 y T4.
- Rango de temperatura de ambiente de -20 °C a +60 °C
- · Chasis en acero tratado ó acero inoxidable.
- Caja de conexiones: Caja de aluminio con entrada para cables de Ø20 mm. entradas de cable adicionales se realizarán bajo pedido.

Estaciones de servicio de gasolina

· Instalaciones de gas

- Elementos calefactores: Elementos tubulares con aletas reemplazables individualmente, fabricados con hilo resistivo de aleación de NiCr 80/20, óxido de magnesio compactado y funda tubular de acero inoxidable.
- Controles: En caso necesario, los convectores de aire caliente FAW pueden ser controlados termostatos de temperatura remotos para uso en zonas clasificadas.
- I Montaje: Válido para suelo o pared (soportes a pared no incluidos. Deben solicitarse por separado)
- Alimentacilh: tensiones normalizadas ~240 V monofásico ó 3~415 V trifásico.

Modelos FAW normalizados

Gama compacta. Chasis en acero inoxidable.

Clase TØrmica T3 → temperatura ambiente mÆxima: 40 IC

Código	Clase térmica	Voltios	Watios	Nº varillas	Di	Peso		
Codigo			walios	IN- Varillas	Α	В	С	en kg
FAW-C-250-T3	T3	~240	250	2	350	160	282	5
FAW-C-500-T3	T3	~240	500	4	350	160	282	6
FAW-C-750-T3	T3	~240	750	4	615	160	545	6
FAW-C-1000-T3	T3	~240	1000	4	615	160	545	9

Chasis en acero.

Clase TØrmica T2 \rightarrow temperatura ambiente m \mathbb{R} xima: 60 DC

Clase TØrmica T3 \rightarrow temperatura ambiente mÆxima: 40 IC

Código	Voltios	Watios	Nº varillas	Dimensiones en mm			
	VOILIOS			Α	В	С	
FAW-250-Tx	~240	250	1	971	160	860	
FAW-500-Tx	~240	500	2	971	160	860	
FAW-750-Tx	3~240 ∆ 3~415人	750	3	971	160	860	
FAW-1000-Tx	3~240 ∆ 3~415人	1000	3	1221	160	1120	
FAW-1500-Tx	3~240 ∆ 3~415人	1500	3	1741	160	1640	
FAW-2000-Tx	~240	2000	4	1741	272	1640	
FAW-2500-Tx	~240	2500	5	1741	272	1640	
FAW-3000-Tx	3~240 ∆ 3~415人	3000	6	1741	272	1640	

Chasis en acero inoxidable.

Clase TØrmica T2 \rightarrow temperatura ambiente mæxima: 60 \square C Clase TØrmica T3 \rightarrow temperatura ambiente mæxima: 40 \square C

Cádina	Voltios	Watios	Nº	Dimensiones en mm		
Codigo	Código Voltios Watios		varillas	Α	В	С
FAW-250-S-T2	~240	250	1	971	160	860
FAW-500-S-T2	~240	500	2	971	160	860
FAW-750-S-Tx	3~240 ∆ 3~415人	750	3	971	160	860
FAW-1000-S-Tx	3~240 ∆ 3~415人	1000	3	1221	160	1120
FAW-1500-S-Tx	3~240 ∆ 3~415人	1500	3	1741	160	1640
FAW-2000-S-Tx	~240	2000	4	1741	272	1640
FAW-2500-S-Tx	~240	2500	5	1741	272	1640
FAW-3000-S-Tx	3~240 ∆ 3~415人	3000	6	1741	272	1640

Chasis en acero.

Clase TØrmica T4 \rightarrow temperatura ambiente m \mathbb{R} xima: 40 \mathbb{I} C

Código	Voltios	Watios	Nº	Dimensiones en mm		
Codigo	VOILIOS	walios	varillas	Α	В	С
FAW-250-T4	~240	250	1	1886	160	1785
FAW-500-T4	~240	500	2	1886	160	1785
FAW-750-T4	3~240 ∆ 3~415人	750	3	1886	160	1785
FAW-1000-T4	~240	1000	4	1886	272	1785
FAW-1250-T4	~240	1250	5	1886	272	1785
FAW-1500-T4	3~240 ∆ 3~415人	1500	6	1886	272	1785

Chasis en acero inoxidable.

Clase TØrmica T4 → temperatura ambiente mæxima: 40 IC

Cádigo	Voltios	Watios	Nº	Dimensiones en mm		
Código	VOILIOS		varillas	Α	В	С
FAW-250-S-T4	~240	250	1	1886	160	1785
FAW-500-S-T4	~240	500	2	1886	160	1785
FAW-750-S-T4	3~240 ∆ 3~415人	750	3	1886	160	1785
FAW-1000-S-T4	~240	1000	4	1886	272	1785
FAW-1500-S-T4	3~240 ∆ 3~415人	1500	6	1886	272	1785

GRUPO 3 - Equipos de calentamiento utilizables en atmósfera potencialmente explosiva

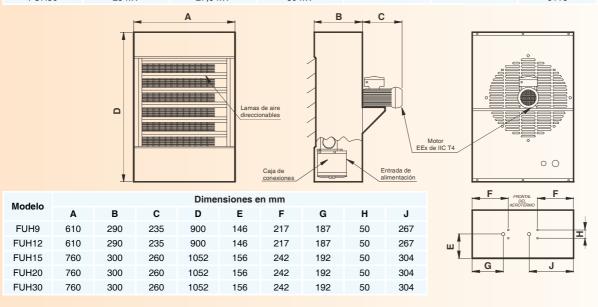
AEROTERMOS DE AIRE CALIENTE, GAMA FUH

La gama de aerotermos eléctricos FUH para zonas con atmósferas potencialmente explosivas ofrecen una solución de calefacción de espacios donde se requieren una alta capacidad de calefacción. Están certificados para su uso en áreas clasificadas Zona 1 y Zona 2 donde la atmósfera inflamable es del grupo IIA, IIB o IIC.

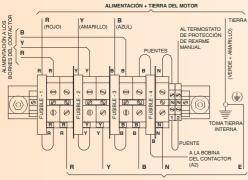
Aplicaciones usuales

- Refinerías de aceite.
- Plantas petroquímicas.
- Minas de carbón.
- Plataformas marinas.

- Plantas de aguas residuales.
 - Almacenes de pintura.


· Almacenes de munición.

Características generales


- Intercambiador de calor líquido aire de alta eficiencia
- Protección contra sobretemperaturas.
- Ángulo de las lamas de salida de aire regulables.
- Opcional: termostato de control de temperatura ambiente integrado.
- Temperatura ambiente de trabajo: -40 °C / +40 °C
- Certificación: Conforme a la directiva ATEX 97/9/EC; ATEX EEx"d" IIC T3, según EN 50014 y EN 50018
- Elementos calefactores: Elementos tubulares, fabricados con hilo resistivo de aleación de NiCr 80/20, Oxido de Magnesio compactado y funda tubular de acero inoxidable Incoloy 825.
- Controles: Termostato de control + Termostato de seguridad de rearme manual. Opcional: Termostato de control para el retorno de aire.
- Alimentación: Calefactor y motor: Trifásico con neutro, con posibilidad de conectar desde 3N~380V hasta 3N~480V. En el cuadro adjunto se proporcionan las potencias correspondientes a las tensiones de alimentación asignadas. Controles: Hasta ~240 V monofásico

Modelos normalizados

Modelo	Potencia calorífica según tensión de alimentación					Caudal	Peso
Wodelo	3N~380 V	3N~400 V	3N~415 V	3N~440 V	3N~480 V	(m³/h)	en Kg
FUH9	7 kW	8,25 kW	9 kW	10 kW	12 kW	1444	120
FUH12	10 kW	11 kW	12 kW	13 kW	16 kW	2973	120
FUH15	13 kW	13,75 kW	15 kW	17 kW	20 kW	2973	145
FUH20	17 kW	18,4 kW	20 kW	23 kW	27 kW	2973	145
FUH30	25 kW	27.5 kW	30 kW			6116	145

ALIMENTACIÓN 3 FASES + NEUTRO + TOMA DE TIERRA DISPOSICIÓN DE LOS BORNES

